timestamp_job_created unutar details
Mozda bi bilo prakticnije ukoliko bi se timestamp kada je job kreiran nalazio van details-a obzirom da se details odnosi na stvari potrebne za job a timestamp mi pamtimo dodatno.
Trenutno:
{
"automl_job_id": "b1af8962-e294-478d-b9dd-a1b08c9393a8-20241009105004",
"details": {
"job_name": "Boston Housing Regression 2",
"data_source": "https://raw.githubusercontent.com/Drashko73/datasets/master/boston_housing/housing.csv",
"target_variable": "medv",
"problem_type": "regression",
"generations": 100,
"population_size": 100,
"offspring_size": 100,
"mutation_rate": 0.9,
"crossover_rate": 0.1,
"scoring": "neg_mean_squared_error",
"cv": 5,
"subsample": 1,
"max_time_mins": 5,
"max_eval_time_mins": 5,
"random_state": 42,
"config_dict": null,
"template": null,
"early_stop": 5,
"automl_library": "tpot",
"timestamp_job_created": "2024-10-09T10:50:04.002830"
}
}
Predlog kako bi izgledalo:
{
"automl_job_id": "b1af8962-e294-478d-b9dd-a1b08c9393a8-20241009105004",
"timestamp_job_created": "2024-10-09T10:50:04.002830",
"details": {
"job_name": "Boston Housing Regression 2",
"data_source": "https://raw.githubusercontent.com/Drashko73/datasets/master/boston_housing/housing.csv",
"target_variable": "medv",
"problem_type": "regression",
"generations": 100,
"population_size": 100,
"offspring_size": 100,
"mutation_rate": 0.9,
"crossover_rate": 0.1,
"scoring": "neg_mean_squared_error",
"cv": 5,
"subsample": 1,
"max_time_mins": 5,
"max_eval_time_mins": 5,
"random_state": 42,
"config_dict": null,
"template": null,
"early_stop": 5,
"automl_library": "tpot"
}
}